// ==============坐标系转换=============== var GSP = { PI: 3.14159265358979324, x_pi: 3.14159265358979324 * 3000.0 / 180.0, delta: function (lat, lon) { // Krasovsky 1940 // // a = 6378245.0, 1/f = 298.3 // b = a * (1 - f) // ee = (a^2 - b^2) / a^2; var a = 6378245.0 // a: 卫星椭球坐标投影到平面地图坐标系的投影因子。 var ee = 0.00669342162296594323 // ee: 椭球的偏心率。 var dLat = this.transformLat(lon - 105.0, lat - 35.0) var dLon = this.transformLon(lon - 105.0, lat - 35.0) var radLat = lat / 180.0 * this.PI var magic = Math.sin(radLat) magic = 1 - ee * magic * magic var sqrtMagic = Math.sqrt(magic) dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * this.PI) dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * this.PI) return { lat: dLat, lon: dLon } }, // WGS-84 to GCJ-02 gcj_encrypt: function (wgsLat, wgsLon) { if (this.outOfChina(wgsLat, wgsLon)) { return { lat: wgsLat, lon: wgsLon } } var d = this.delta(wgsLat, wgsLon) return { lat: wgsLat + d.lat, lon: wgsLon + d.lon } }, // GCJ-02 to WGS-84 gcj_decrypt: function (gcjLat, gcjLon) { if (this.outOfChina(gcjLat, gcjLon)) { return { lat: gcjLat, lon: gcjLon } } var d = this.delta(gcjLat, gcjLon) return { lat: gcjLat - d.lat, lon: gcjLon - d.lon } }, // GCJ-02 to WGS-84 exactly gcj_decrypt_exact: function (gcjLat, gcjLon) { const initDelta = 0.01 const threshold = 0.000000001 let dLat = initDelta let dLon = initDelta let mLat = gcjLat - dLat let mLon = gcjLon - dLon let pLat = gcjLat + dLat let pLon = gcjLon + dLon let wgsLat let wgsLon let i = 0 while (1) { wgsLat = (mLat + pLat) / 2 wgsLon = (mLon + pLon) / 2 var tmp = this.gcj_encrypt(wgsLat, wgsLon) dLat = tmp.lat - gcjLat dLon = tmp.lon - gcjLon if ((Math.abs(dLat) < threshold) && (Math.abs(dLon) < threshold)) { break } if (dLat > 0) pLat = wgsLat; else mLat = wgsLat if (dLon > 0) pLon = wgsLon; else mLon = wgsLon if (++i > 10000) break } // console.log(i); return { lat: wgsLat, lon: wgsLon } }, // GCJ-02 to BD-09 bd_encrypt: function (gcjLat, gcjLon) { const x = gcjLon const y = gcjLat const z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * this.x_pi) const theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * this.x_pi) const bdLon = z * Math.cos(theta) + 0.0065 const bdLat = z * Math.sin(theta) + 0.006 return { lat: bdLat, lon: bdLon } }, // BD-09 to GCJ-02 bd_decrypt: function (bdLat, bdLon) { const x = bdLon - 0.0065 const y = bdLat - 0.006 const z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * this.x_pi) const theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * this.x_pi) const gcjLon = z * Math.cos(theta) const gcjLat = z * Math.sin(theta) return { lat: gcjLat, lon: gcjLon } }, // WGS-84 to Web mercator // mercatorLat -> y mercatorLon -> x mercator_encrypt: function (wgsLat, wgsLon) { const x = wgsLon * 20037508.34 / 180.0 let y = Math.log(Math.tan((90.0 + wgsLat) * this.PI / 360.0)) / (this.PI / 180.0) y = y * 20037508.34 / 180.0 return { lat: y, lon: x } /* if ((Math.abs(wgsLon) > 180 || Math.abs(wgsLat) > 90)) return null; var x = 6378137.0 * wgsLon * 0.017453292519943295; var a = wgsLat * 0.017453292519943295; var y = 3189068.5 * Math.log((1.0 + Math.sin(a)) / (1.0 - Math.sin(a))); return {'lat' : y, 'lon' : x}; // */ }, // Web mercator to WGS-84 // mercatorLat -> y mercatorLon -> x mercator_decrypt: function (mercatorLat, mercatorLon) { var x = mercatorLon / 20037508.34 * 180.0 var y = mercatorLat / 20037508.34 * 180.0 y = 180 / this.PI * (2 * Math.atan(Math.exp(y * this.PI / 180.0)) - this.PI / 2) return { lat: y, lon: x } /* if (Math.abs(mercatorLon) < 180 && Math.abs(mercatorLat) < 90) return null; if ((Math.abs(mercatorLon) > 20037508.3427892) || (Math.abs(mercatorLat) > 20037508.3427892)) return null; var a = mercatorLon / 6378137.0 * 57.295779513082323; var x = a - (Math.floor(((a + 180.0) / 360.0)) * 360.0); var y = (1.5707963267948966 - (2.0 * Math.atan(Math.exp((-1.0 * mercatorLat) / 6378137.0)))) * 57.295779513082323; return {'lat' : y, 'lon' : x}; // */ }, // two point's distance distance: function (latA, lonA, latB, lonB) { var earthR = 6371000.0 var x = Math.cos(latA * this.PI / 180.0) * Math.cos(latB * this.PI / 180.0) * Math.cos((lonA - lonB) * this.PI / 180) var y = Math.sin(latA * this.PI / 180.0) * Math.sin(latB * this.PI / 180.0) var s = x + y if (s > 1) s = 1 if (s < -1) s = -1 var alpha = Math.acos(s) var distance = alpha * earthR return distance }, outOfChina: function (lat, lon) { if (lon < 72.004 || lon > 137.8347) { return true } if (lat < 0.8293 || lat > 55.8271) { return true } return false }, transformLat: function (x, y) { var ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x)) ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 ret += (20.0 * Math.sin(y * this.PI) + 40.0 * Math.sin(y / 3.0 * this.PI)) * 2.0 / 3.0 ret += (160.0 * Math.sin(y / 12.0 * this.PI) + 320 * Math.sin(y * this.PI / 30.0)) * 2.0 / 3.0 return ret }, transformLon: function (x, y) { var ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x)) ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 ret += (20.0 * Math.sin(x * this.PI) + 40.0 * Math.sin(x / 3.0 * this.PI)) * 2.0 / 3.0 ret += (150.0 * Math.sin(x / 12.0 * this.PI) + 300.0 * Math.sin(x / 30.0 * this.PI)) * 2.0 / 3.0 return ret } } export default { GSP }