| | |
| | | // ==============坐标系转换=============== |
| | | var GSP = { |
| | | PI: 3.14159265358979324, |
| | | x_pi: 3.14159265358979324 * 3000.0 / 180.0, |
| | | delta: function(lat, lon) { |
| | | // Krasovsky 1940 |
| | | // |
| | | // a = 6378245.0, 1/f = 298.3 |
| | | // b = a * (1 - f) |
| | | // ee = (a^2 - b^2) / a^2; |
| | | var a = 6378245.0 // a: 卫星椭球坐标投影到平面地图坐标系的投影因子。 |
| | | var ee = 0.00669342162296594323 // ee: 椭球的偏心率。 |
| | | var dLat = this.transformLat(lon - 105.0, lat - 35.0) |
| | | var dLon = this.transformLon(lon - 105.0, lat - 35.0) |
| | | var radLat = lat / 180.0 * this.PI |
| | | var magic = Math.sin(radLat) |
| | | magic = 1 - ee * magic * magic |
| | | var sqrtMagic = Math.sqrt(magic) |
| | | dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * this.PI) |
| | | dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * this.PI) |
| | | return { 'lat': dLat, 'lon': dLon } |
| | | }, |
| | | PI: 3.14159265358979324, |
| | | x_pi: 3.14159265358979324 * 3000.0 / 180.0, |
| | | delta: function (lat, lon) { |
| | | // Krasovsky 1940 |
| | | // |
| | | // a = 6378245.0, 1/f = 298.3 |
| | | // b = a * (1 - f) |
| | | // ee = (a^2 - b^2) / a^2; |
| | | var a = 6378245.0 // a: 卫星椭球坐标投影到平面地图坐标系的投影因子。 |
| | | var ee = 0.00669342162296594323 // ee: 椭球的偏心率。 |
| | | var dLat = this.transformLat(lon - 105.0, lat - 35.0) |
| | | var dLon = this.transformLon(lon - 105.0, lat - 35.0) |
| | | var radLat = lat / 180.0 * this.PI |
| | | var magic = Math.sin(radLat) |
| | | magic = 1 - ee * magic * magic |
| | | var sqrtMagic = Math.sqrt(magic) |
| | | dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * this.PI) |
| | | dLon = (dLon * 180.0) / (a / sqrtMagic * Math.cos(radLat) * this.PI) |
| | | return { lat: dLat, lon: dLon } |
| | | }, |
| | | |
| | | // WGS-84 to GCJ-02 |
| | | gcj_encrypt: function(wgsLat, wgsLon) { |
| | | if (this.outOfChina(wgsLat, wgsLon)) { return { 'lat': wgsLat, 'lon': wgsLon } } |
| | | // WGS-84 to GCJ-02 |
| | | gcj_encrypt: function (wgsLat, wgsLon) { |
| | | if (this.outOfChina(wgsLat, wgsLon)) { return { lat: wgsLat, lon: wgsLon } } |
| | | |
| | | var d = this.delta(wgsLat, wgsLon) |
| | | return { 'lat': wgsLat + d.lat, 'lon': wgsLon + d.lon } |
| | | }, |
| | | // GCJ-02 to WGS-84 |
| | | gcj_decrypt: function(gcjLat, gcjLon) { |
| | | if (this.outOfChina(gcjLat, gcjLon)) { return { 'lat': gcjLat, 'lon': gcjLon } } |
| | | var d = this.delta(wgsLat, wgsLon) |
| | | return { lat: wgsLat + d.lat, lon: wgsLon + d.lon } |
| | | }, |
| | | // GCJ-02 to WGS-84 |
| | | gcj_decrypt: function (gcjLat, gcjLon) { |
| | | if (this.outOfChina(gcjLat, gcjLon)) { return { lat: gcjLat, lon: gcjLon } } |
| | | |
| | | var d = this.delta(gcjLat, gcjLon) |
| | | return { 'lat': gcjLat - d.lat, 'lon': gcjLon - d.lon } |
| | | }, |
| | | // GCJ-02 to WGS-84 exactly |
| | | gcj_decrypt_exact: function(gcjLat, gcjLon) { |
| | | let initDelta = 0.01 |
| | | let threshold = 0.000000001 |
| | | let dLat = initDelta |
| | | let dLon = initDelta |
| | | let mLat = gcjLat - dLat |
| | | let mLon = gcjLon - dLon |
| | | let pLat = gcjLat + dLat |
| | | let pLon = gcjLon + dLon |
| | | let wgsLat |
| | | let wgsLon |
| | | let i = 0 |
| | | while (1) { |
| | | wgsLat = (mLat + pLat) / 2 |
| | | wgsLon = (mLon + pLon) / 2 |
| | | var tmp = this.gcj_encrypt(wgsLat, wgsLon) |
| | | dLat = tmp.lat - gcjLat |
| | | dLon = tmp.lon - gcjLon |
| | | if ((Math.abs(dLat) < threshold) && (Math.abs(dLon) < threshold)) { break } |
| | | var d = this.delta(gcjLat, gcjLon) |
| | | return { lat: gcjLat - d.lat, lon: gcjLon - d.lon } |
| | | }, |
| | | // GCJ-02 to WGS-84 exactly |
| | | gcj_decrypt_exact: function (gcjLat, gcjLon) { |
| | | const initDelta = 0.01 |
| | | const threshold = 0.000000001 |
| | | let dLat = initDelta |
| | | let dLon = initDelta |
| | | let mLat = gcjLat - dLat |
| | | let mLon = gcjLon - dLon |
| | | let pLat = gcjLat + dLat |
| | | let pLon = gcjLon + dLon |
| | | let wgsLat |
| | | let wgsLon |
| | | let i = 0 |
| | | while (1) { |
| | | wgsLat = (mLat + pLat) / 2 |
| | | wgsLon = (mLon + pLon) / 2 |
| | | var tmp = this.gcj_encrypt(wgsLat, wgsLon) |
| | | dLat = tmp.lat - gcjLat |
| | | dLon = tmp.lon - gcjLon |
| | | if ((Math.abs(dLat) < threshold) && (Math.abs(dLon) < threshold)) { break } |
| | | |
| | | if (dLat > 0) pLat = wgsLat; else mLat = wgsLat |
| | | if (dLon > 0) pLon = wgsLon; else mLon = wgsLon |
| | | if (dLat > 0) pLat = wgsLat; else mLat = wgsLat |
| | | if (dLon > 0) pLon = wgsLon; else mLon = wgsLon |
| | | |
| | | if (++i > 10000) break |
| | | } |
| | | // console.log(i); |
| | | return { 'lat': wgsLat, 'lon': wgsLon } |
| | | }, |
| | | // GCJ-02 to BD-09 |
| | | bd_encrypt: function(gcjLat, gcjLon) { |
| | | let x = gcjLon |
| | | let y = gcjLat |
| | | let z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * this.x_pi) |
| | | let theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * this.x_pi) |
| | | let bdLon = z * Math.cos(theta) + 0.0065 |
| | | let bdLat = z * Math.sin(theta) + 0.006 |
| | | return { 'lat': bdLat, 'lon': bdLon } |
| | | }, |
| | | // BD-09 to GCJ-02 |
| | | bd_decrypt: function(bdLat, bdLon) { |
| | | let x = bdLon - 0.0065 |
| | | let y = bdLat - 0.006 |
| | | let z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * this.x_pi) |
| | | let theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * this.x_pi) |
| | | let gcjLon = z * Math.cos(theta) |
| | | let gcjLat = z * Math.sin(theta) |
| | | return { 'lat': gcjLat, 'lon': gcjLon } |
| | | }, |
| | | // WGS-84 to Web mercator |
| | | // mercatorLat -> y mercatorLon -> x |
| | | mercator_encrypt: function(wgsLat, wgsLon) { |
| | | let x = wgsLon * 20037508.34 / 180.0 |
| | | let y = Math.log(Math.tan((90.0 + wgsLat) * this.PI / 360.0)) / (this.PI / 180.0) |
| | | y = y * 20037508.34 / 180.0 |
| | | return { 'lat': y, 'lon': x } |
| | | /* |
| | | if (++i > 10000) break |
| | | } |
| | | // console.log(i); |
| | | return { lat: wgsLat, lon: wgsLon } |
| | | }, |
| | | // GCJ-02 to BD-09 |
| | | bd_encrypt: function (gcjLat, gcjLon) { |
| | | const x = gcjLon |
| | | const y = gcjLat |
| | | const z = Math.sqrt(x * x + y * y) + 0.00002 * Math.sin(y * this.x_pi) |
| | | const theta = Math.atan2(y, x) + 0.000003 * Math.cos(x * this.x_pi) |
| | | const bdLon = z * Math.cos(theta) + 0.0065 |
| | | const bdLat = z * Math.sin(theta) + 0.006 |
| | | return { lat: bdLat, lon: bdLon } |
| | | }, |
| | | // BD-09 to GCJ-02 |
| | | bd_decrypt: function (bdLat, bdLon) { |
| | | const x = bdLon - 0.0065 |
| | | const y = bdLat - 0.006 |
| | | const z = Math.sqrt(x * x + y * y) - 0.00002 * Math.sin(y * this.x_pi) |
| | | const theta = Math.atan2(y, x) - 0.000003 * Math.cos(x * this.x_pi) |
| | | const gcjLon = z * Math.cos(theta) |
| | | const gcjLat = z * Math.sin(theta) |
| | | return { lat: gcjLat, lon: gcjLon } |
| | | }, |
| | | // WGS-84 to Web mercator |
| | | // mercatorLat -> y mercatorLon -> x |
| | | mercator_encrypt: function (wgsLat, wgsLon) { |
| | | const x = wgsLon * 20037508.34 / 180.0 |
| | | let y = Math.log(Math.tan((90.0 + wgsLat) * this.PI / 360.0)) / (this.PI / 180.0) |
| | | y = y * 20037508.34 / 180.0 |
| | | return { lat: y, lon: x } |
| | | /* |
| | | if ((Math.abs(wgsLon) > 180 || Math.abs(wgsLat) > 90)) |
| | | return null; |
| | | var x = 6378137.0 * wgsLon * 0.017453292519943295; |
| | | var a = wgsLat * 0.017453292519943295; |
| | | var y = 3189068.5 * Math.log((1.0 + Math.sin(a)) / (1.0 - Math.sin(a))); |
| | | return {'lat' : y, 'lon' : x}; |
| | | //*/ |
| | | }, |
| | | // Web mercator to WGS-84 |
| | | // mercatorLat -> y mercatorLon -> x |
| | | mercator_decrypt: function(mercatorLat, mercatorLon) { |
| | | var x = mercatorLon / 20037508.34 * 180.0 |
| | | var y = mercatorLat / 20037508.34 * 180.0 |
| | | y = 180 / this.PI * (2 * Math.atan(Math.exp(y * this.PI / 180.0)) - this.PI / 2) |
| | | return { 'lat': y, 'lon': x } |
| | | /* |
| | | // */ |
| | | }, |
| | | // Web mercator to WGS-84 |
| | | // mercatorLat -> y mercatorLon -> x |
| | | mercator_decrypt: function (mercatorLat, mercatorLon) { |
| | | var x = mercatorLon / 20037508.34 * 180.0 |
| | | var y = mercatorLat / 20037508.34 * 180.0 |
| | | y = 180 / this.PI * (2 * Math.atan(Math.exp(y * this.PI / 180.0)) - this.PI / 2) |
| | | return { lat: y, lon: x } |
| | | /* |
| | | if (Math.abs(mercatorLon) < 180 && Math.abs(mercatorLat) < 90) |
| | | return null; |
| | | if ((Math.abs(mercatorLon) > 20037508.3427892) || (Math.abs(mercatorLat) > 20037508.3427892)) |
| | |
| | | var x = a - (Math.floor(((a + 180.0) / 360.0)) * 360.0); |
| | | var y = (1.5707963267948966 - (2.0 * Math.atan(Math.exp((-1.0 * mercatorLat) / 6378137.0)))) * 57.295779513082323; |
| | | return {'lat' : y, 'lon' : x}; |
| | | //*/ |
| | | }, |
| | | // two point's distance |
| | | distance: function(latA, lonA, latB, lonB) { |
| | | var earthR = 6371000.0 |
| | | var x = Math.cos(latA * this.PI / 180.0) * Math.cos(latB * this.PI / 180.0) * Math.cos((lonA - lonB) * this.PI / 180) |
| | | var y = Math.sin(latA * this.PI / 180.0) * Math.sin(latB * this.PI / 180.0) |
| | | var s = x + y |
| | | if (s > 1) s = 1 |
| | | if (s < -1) s = -1 |
| | | var alpha = Math.acos(s) |
| | | var distance = alpha * earthR |
| | | return distance |
| | | }, |
| | | outOfChina: function(lat, lon) { |
| | | if (lon < 72.004 || lon > 137.8347) { return true } |
| | | if (lat < 0.8293 || lat > 55.8271) { return true } |
| | | return false |
| | | }, |
| | | transformLat: function(x, y) { |
| | | var ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x)) |
| | | ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 |
| | | ret += (20.0 * Math.sin(y * this.PI) + 40.0 * Math.sin(y / 3.0 * this.PI)) * 2.0 / 3.0 |
| | | ret += (160.0 * Math.sin(y / 12.0 * this.PI) + 320 * Math.sin(y * this.PI / 30.0)) * 2.0 / 3.0 |
| | | return ret |
| | | }, |
| | | transformLon: function(x, y) { |
| | | var ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x)) |
| | | ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 |
| | | ret += (20.0 * Math.sin(x * this.PI) + 40.0 * Math.sin(x / 3.0 * this.PI)) * 2.0 / 3.0 |
| | | ret += (150.0 * Math.sin(x / 12.0 * this.PI) + 300.0 * Math.sin(x / 30.0 * this.PI)) * 2.0 / 3.0 |
| | | return ret |
| | | } |
| | | // */ |
| | | }, |
| | | // two point's distance |
| | | distance: function (latA, lonA, latB, lonB) { |
| | | var earthR = 6371000.0 |
| | | var x = Math.cos(latA * this.PI / 180.0) * Math.cos(latB * this.PI / 180.0) * Math.cos((lonA - lonB) * this.PI / 180) |
| | | var y = Math.sin(latA * this.PI / 180.0) * Math.sin(latB * this.PI / 180.0) |
| | | var s = x + y |
| | | if (s > 1) s = 1 |
| | | if (s < -1) s = -1 |
| | | var alpha = Math.acos(s) |
| | | var distance = alpha * earthR |
| | | return distance |
| | | }, |
| | | outOfChina: function (lat, lon) { |
| | | if (lon < 72.004 || lon > 137.8347) { return true } |
| | | if (lat < 0.8293 || lat > 55.8271) { return true } |
| | | return false |
| | | }, |
| | | transformLat: function (x, y) { |
| | | var ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y + 0.2 * Math.sqrt(Math.abs(x)) |
| | | ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 |
| | | ret += (20.0 * Math.sin(y * this.PI) + 40.0 * Math.sin(y / 3.0 * this.PI)) * 2.0 / 3.0 |
| | | ret += (160.0 * Math.sin(y / 12.0 * this.PI) + 320 * Math.sin(y * this.PI / 30.0)) * 2.0 / 3.0 |
| | | return ret |
| | | }, |
| | | transformLon: function (x, y) { |
| | | var ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1 * Math.sqrt(Math.abs(x)) |
| | | ret += (20.0 * Math.sin(6.0 * x * this.PI) + 20.0 * Math.sin(2.0 * x * this.PI)) * 2.0 / 3.0 |
| | | ret += (20.0 * Math.sin(x * this.PI) + 40.0 * Math.sin(x / 3.0 * this.PI)) * 2.0 / 3.0 |
| | | ret += (150.0 * Math.sin(x / 12.0 * this.PI) + 300.0 * Math.sin(x / 30.0 * this.PI)) * 2.0 / 3.0 |
| | | return ret |
| | | } |
| | | } |
| | | |
| | | export default { |
| | | GSP |
| | | GSP |
| | | } |